domingo, 15 de diciembre de 2013

vido del caso de factorizacion # 7

http://youtu.be/qDhAzsI-pGQ

LOS 10 CASOS DE FACTORIZACIÓN






PRIMER CASO
EL PRIMER CASO DE FACTORES SE DIVIDE EN DOS PARTES QUE SON: FACTOR COMÚN MONOMIO Y FACTOR COMÚN POLINOMIO
FACTOR COMÚN MONOMIO
Es una expresión algebraica en la que se utilizan exponentes naturales de variables literales que constan de un solo término si hubiera + ó – seria binomio, un número llamado coeficiente. Las únicas operaciones que aparecen entre las letras son el producto y la potencia de exponentes naturales. Se denomina polinomio a la suma de varios monomios. Un monomio es una clase de polinomio con un único término.
EJEMPLO 1:
5a2 - 15ab - 10 ac
El factor común entre los coeficientes es 5 y entre los factores literales es a, por lo tanto
 5a2 - 15ab - 10 ac = 5a·a - 5a·3b - 5a · 2c = 5a(a - 3b - 2c)
SEGUNDO CASO
FACTOR COMUN POR AGRUPACION
Se llama factor común por agrupación de términos, si los términos de un polinomio pueden reunirse en grupos de términos con un factor común diferente en cada grupo.
Cuando pueden reunirse en grupos de igual número de términos se le saca en cada uno de ellos el factor común. Si queda la misma expresión en cada uno de los grupos entre paréntesis, se la saca este grupo como factor común, quedando así una multiplicación de polinomios.
Tratar desde el principio que nos queden iguales los términos de los paréntesis nos hará más sencillo el resolver estos problemas.
EJEMPLO1
2ax + 2bx - ay + 5a - by + 5b
Agrupo los términos que tienen un factor común:
                        (2ax - ay + 5a) + (2bx - by + 5b)
Saco el factor común de cada grupo:
                        a (2x - y + 5 ) + b (2x - y + 5 )
Como las expresiones encerradas entre paréntesis son iguales se tiene:
                        (2x -y +5)(a + b)
TERCER CASO
TRINOMIO CUADRADO PERFECTO
Es igual al cuadrado de un binomio. Se llama trinomio cuadrado perfecto al trinomio (polinomio de tres términos) tal que, dos de sus términos son cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.
EJEMPLO  1 :
a2 +2ab + b2= (a+b)2
4x2 – 20xy + 25y2= (2x – 5y) (2x – 5y) = (2x – 5y)2 R/.
16 + 40x2 + 25x4 = (4 + 5x2) (4 + 5x2) = (4 + 5x2)2
9b2 – 30a2b + 25a4 = (3b – 5a2) (3b – 5a2) = (3b – 5a2)2
400x10 + 40x5 + 1 = (20 x5 + 1) (20 x5 + 1) = (20 x5 + 1)2
CASO CUATRO
DIFERENCIA DE CUADRADOS
Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. 
EJEMPLO  1:
1  9y2-4x2= (3y-2x) (3y+2x)   R//
CASO ESPECIAL
La regla empleada en los ejemplos anteriores es aplicable a las diferencias de cuadrado en que uno o ambos cuadrados son expresiones compuestas. 
Así, en este caso, tenemos: La raíz cuadrada de (a + b)2 es (a + b) La raíz cuadrada de c2 es  c  
Multiplica la suma de las raíces, (a + b + c) por la diferencia entre la raíz del minuendo y la del Sustraendo (a + b - c)
EJEMPLO  1:
1   4x2 - (x + y)2
4x2 - (x + y)2 = [2x + (x + y)] * [2x - (x + y)]
4x2 - (x + y)2 = [2x + x + y] * [2x - x - y]
4x2 - (x + y)2 = [3x + y] * [x - y] 
CASO 5

TRINOMIO CUADRADO PERFECTO POR ADICION Y SUSTRACCION
Algunos trinomios no cumplen las condiciones para ser trinomios cuadrados perfectos, el primer y tercer término tienen raíz cuadrada perfecta pero el de la mitad no es el doble producto de las dos raíces. Se debe saber cuanto debe ser el doble producto y la cantidad que falte para cuadrar el término de la mitad, esta cantidad se le suma y se le resta al mismo tiempo, de tal forma se armara un trinomio cuadrado y factorizado unido con el último término tendremos una diferencia de cuadrados.
  EJEMPLOS 1
   4a4 + 8a2 b2 + 9b4
4a4 + 8a2 b2 + 9b4
      + 4a2 b2             - 4a2 b2
4a4 +12a2b2 + 9b4- 4a2b2 = (4a4 + 12a2 b2 + 9b4) - 4a2b2
 (4a4 + 12a2 b2 + 9b4) - 4a2 b2
 (2a2 + 3b2)2 - 4a2 b2
(2a2 + 3b2)2 - 4a2 b2 = [(2a2 + 3b2) + 2ab] * [(2a2 + 3b2) - 2ab]
(2a2 + 3b2)2 - 4a2 b2 = [2a2 + 3b2 + 2ab] * [2a2 + 3b2 - 2ab]
4a4 + 8a2 b2 + 9b4= [2a2 + 2ab + 3b2] * [2a2 – 2ab + 3b2]
CASO 6
TRINOMIO DE LA FORMA x2 + bx + c
Trinomios de la forma x2 + bx + c son trinomios como
x2 + 5x + 6
a2 – 2a – 15
m2 + 5m – 14
y2 – 8y + 15
Que cumplen las condiciones siguientes:
• El coeficiente del primer término es 1
• El primer término es una letra cualquiera elevada al cuadrado.
• El segundo término tiene la misma letra que el primero con exponente 1 y su coeficiente es una cantidad cualquiera, positiva o negativa.
• El tercer termino es independiente de la letra que aparece en el primer y segundo termino y es una cantidad cualquiera, positiva o negativa
EJEMPLO  1
x2 + 5x + 6 = (x + 2) * (x + 3) 
           CASO ESPECIAL DEL CASO 6
El procedimiento anterior es aplicable a la factorización de trinomio que siendo de la forma x2+bx+c difieren algo de los estudiados anteriormente.
Ejemplo:
X4-5x2-50 =
El primer término de cada factor binomio será la raíz cuadrada de X4 o sea X2
X4-5x2-50 = (X2 -  ) (X2 +  )
Buscamos dos números cuya diferencia (signos distintos en los binomios) sea 5 y cuyo producto sea 50. Esos números son 10 y 5 tendremos:
X4-5x2-50 = (X2 - 10) (X2 + 5)
EJEMPLOS 1
c2 + 5c – 24 =
c2 + 5c – 24 = (c + 8) * (c – 3)
  
CASO 7
TRINOMIO DE LA FORMA AX2+BX+C
Condiciones que debe cumplir un trinomio de la forma ax2+bx+c:
El primer término tiene un coeficiente mayor que 1 y tiene una letra cualquiera elevada al cuadrado.
El segundo término tiene la misma letra que el primero pero con exponente 1 y su coeficiente es una cantidad cualquiera positiva o negativa.
El tercer término es una cantidad cualquiera positiva o negativa sin ninguna letra en común con el 1 y 2 términos.
Ejemplo  1 :
6x2 -7x -3
1) Se multiplica el coeficiente del primer término” 6” por todo el trinomio, dejando el producto del 2  término indicado:
6(6x2 -7x +3) =36x2 -6(7x) -18
2) Se ordena tomando en cuenta que 36x2 = (6x)2 y 6(-7x) = -7(6x), escribiéndolo de la siguiente manera: (6x) 2 -7(6x) -18
3) Luego se procede a factorar (6x) 2 -7(6x) -18 como un problema del Caso VI. Con una variante que se explica en el Inciso 6°
4) Se forman 2 factores binomios con la raíz cuadrada del primer término del trinomio: (6x-  )(6x+  )
5) Se buscan dos números cuya diferencia sea -7  y cuyo producto sea -18 esos números son -9 y +2  porque: -9 +2 = -7  y (-9) (2) = -18= (6x-9)(6x+2)
6) Aquí está la variante: Como al principio multiplicamos el trinomio por “6″, entonces ahora los factores binomios encontrados, los dividimos entre”6″
(6x-9)(6x+2) / 6; como ninguno de los binomios es divisible entre “6″ entonces descomponemos el “6″ en dos factores (3y2), de manera que uno divida a un factor binomio y el segundo divida al otro. Así: (6x-9) / 3 y (6x+2) / 2, y estos cocientes quedarían así:(2x-3) (3x+1)
CASOS ESPECIALES
EJEMPLO    1 :
20x^2 +7x -6 = (4x+3) (5x-2)
3x² + 8x – 35 = (3x - 7) (x + 5)
8. 9a² + 9ab - 18b² = (a + 2b) (a - b)
9. 4x² +17x -15 = (4x - 3) (x + 5)
10. 15x² + x - 2 = (5x + 2) (3x - 1)
CASO 8
CUBO PERFECTO DE BINOMIOS
Debemos tener en cuenta que los productos notables nos dicen que:
(a+b)3 = a2 +3a 2 b+3 a b 2 +b3 y (a-b)3 = a2-3a 2 b+3ab 2 - b3
La fórmula de arriba nos dice que para una expresión algebraica ordenada con respecto a una parte literal sea el cubo de un binomio, tiene que cumplir lo siguiente:
1. Tener cuatro términos.
2. Que el primer término y el último sean cubos perfectos.
3. Que el segundo término sea más o menos el triplo de la primera raíz cúbica elevada al cuadrado que multiplica la raíz cúbica del último término.
4. Que el tercer término sea el triplo de la primera raíz cúbica por la raíz cubica del último término elevada al cuadrado
Si todos los términos de la expresión algebraica son positivos, la respuesta de la expresión dada será la suma de sus raíces cúbicas de su primer y último término, y si los términos son positivos y negativos la expresión será la diferencia de dichas raíces.
EJEMPLO   1 
1) 8a3 -36a2b+54ab2-27b3
La raíz cúbica de 8a3 es 2a
La raíz cúbica de 27b3es 3b
3(2 a)2(3b) = 36a2 b, segundo término
3(2 a) (3b)2 = 54ab2, tercer término
Y como los términos son alternativamente positivos y negativo, la expresión dada es el cubo de:
R. (2a -3b)3
  

CASO 9
SUMA O DIFERENCIA DE CUBOS PERFECTOS
Pasos para resolver el ejercicio:
1. Descomponemos en dos factores.
2. En el primer factor se escribe la suma o la diferencia según sea el caso, de las raíces cúbicas de los dos términos.
3. En el segundo factor se escribe la raíz del primer termino elevada al cuadrado, empezando con el signo menos y de ahí en adelante sus signos alternados (si es una suma de cubos) o con signo más (si es una diferencia de cubos) el producto de la primera raíz por la segunda, más el cuadrado de la segunda raíz.
La fórmula (1) nos dice:
REGLA 1 la suma de dos cubos perfectos se descompone en dos factores:
1. La suma de sus raíces cúbicas
2. El cuadrado de la primera raíz, menos la multiplicación de las dos raíces, más el cuadrado de la segunda raíz. a3 +b3 =(a+b) (a2-ab+b2)
La fórmula (2) nos dice:
REGLA 2
La diferencia de dos cubos perfectos se descompone en dos factores:
1. La diferencia de sus raíces cúbicas
2. El cuadrado de la primera raíz, más el cuadrado de la segunda raíz.
a3 - b3 =(a-b) (a2+ab+b2)
EJEMPLO 1
27x3 + 125 y9 = (3x+5y3) (9x2-15x y3+25y6)
1 – a3 = (1-a) (1+a+ a2)
1 + a3 = (1+a) (1-a+ a2)
a3 + 27 = (a+3) (a2- 3a+ 9)
x3 – 27 = (x -3) (x2- 3x+ 9)
CASO 10
SUMA O DIFERENCIA DE DOS POTENCIAS IGUALES
Procedimiento:
Se aplican los siguientes criterios:
Criterios de divisibilidad de expresiones de la forma an + - bn
Criterio 1: an – bn  es divisible por a - b siendo n par o impar
Criterio 2: an – bn  es divisible por a + b siendo n impar
Criterio 3: an – bn  es divisible por a + b siendo n es par
Criterio 4: an + bn  nunca es divisible por a - b
Pasos para resolver la suma de dos potencias iguales
Factorar x5 +32
1.- Encontramos la raíz quinta de los términos:
Raíz quinta de x5 = x; raíz quinta de 32 = 2
2.- Formamos el primer factor con las raíces: (x +2)
3.- Formamos el segundo factor:
(x4 – x3(2) +x2(2)2 – x (2)3 + (2)4) = (x4 – 2x3 + 4x2 – 8x + 16)
 x5 +32 = (x +2) (x4 – 2x3 + 4x2 – 8x + 16)
EJEMPLO   1 :
1.) x7+128
1.- Encontramos la raíz séptima de los términos:
Raíz séptima de x7 = x; raíz séptima de 128 = 2

matris inversa

MATRIZ INVERSA


CALCULO DE UNA MATRIZ INVERSA


Método de Gauss-Jordán

Este método consiste en colocar junto a la matriz de partida (A) la matriz identidad (I) y hacer operaciones por filas, afectando esas operaciones tanto a como aI, con el objeto de transformar la matriz A en la matriz identidad, la matriz resultante de las operaciones sobre I es la inversa de A
(A-1).


Las operaciones que podemos hacer sobre las filas son:
a) Sustituir una fila por ella multiplicada por una constante, por ejemplo, sustituimos la fila 2 por ella multiplicada por 3.
b) Permutar dos filas

c) Sustituir una fila por una combinación lineal de ella y otras.




la regla del sarrus

LA REGLA DE SARRUS




La regla de Sarrus es un método fácil para memorizar y calcular el determinante de una matriz 3×3. Recibe su nombre del matemático francés Pierre Frédéric Sarrus.
Considérese la matriz 3×3:








Su determinante se puede calcular de la siguiente manera:
En primer lugar, repetir las dos primeras columnas de la matriz a la derecha de la misma de manera que queden cinco columnas en fila. Después sumar los productos de las diagonales descendentes (en línea continua) y sustraer los productos de las diagonales ascendentes (en trazos). Esto resulta en:








Un proceso similar basado en diagonales también funciona con matrices 2×2:








Esta regla mnemotecnia es un caso especial de la fórmula de Leibniz y ha sido conocido que no puede aplicar para matrices mayores a 3×3. Sin embargo, en octubre del año 2000, el matemático Gustavo Villalobos Hernández de la Universidad de Guadalajara, en México, encontró un método para calcular el determinante de una matriz de 4×4, sin reducir a determinantes de 3×3 con la matriz adjunta y el menor complementario. Su resultado es una extensión completa de la Regla de Sarrus, ya que utiliza el mismo método, obteniendo directamente los 24 términos requeridos para su cálculo.

matrices

Matriz

Una matriz es un arreglo bidimensional de números (llamados entradas de la matriz) ordenados en filas (o renglones) y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con n filas y m columnas se le denomina matriz n-por-m .
 El conjunto de las matrices de tamaño 
 se representa como, donde  es el campo al cual pertenecen las entradas. El tamaño de una matriz siempre se da con el número de filas primero y el número de columnas después. Dos matrices se dice que son iguales si tienen el mismo tamaño y los mismos elementos en las mismas posiciones..
Las matrices se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar las aplicaciones lineales; en este último caso las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales.
Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.


TIPOS DE MATRICES

Matriz Fila
Matriz Columna
Matriz Rectangular
Matriz Transpuesta
Matriz Nula
Matriz Cuadrada


CLASES DE MATRICES CUADRADAS

Matriz triangular superior
Matriz triangular inferior
Matriz diagonal
Matriz escalar
Matriz identidad o unidad
Matriz regular
Matriz singular
Matriz idempotente
Matriz involutiva
Matriz simétrica
Matriz antisimetrica o hemisimetrica
Matriz ortogonal

matrices

MATRICES

En matemáticas, una matriz es un arreglo bidimensional de números, y en su mayor generalidad de elementos de un anillo. Las matrices se usan generalmente para describir sistemas de ecuaciones lineales, sistemas de ecuaciones diferenciales o representar una aplicación lineal (dada una base). Las matrices se describen en el campo de la teoría de matrices.
Las matrices se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar las aplicaciones lineales; en este último caso las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales.

Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.

TIPOS DE MATRICES
1. Matriz Fila
2. Matriz Columna
3. Matriz Rectangular
4. Matriz Transpuesta
5. Matriz Nula
6. Matriz Cuadrada
TIPOS DE MATRICES CUADRADAS
1. Matriz triangular superior
2. Matriz triangular inferior
3. Matriz diagonal
4. Matriz escalar
5. Matriz identidad o unidad
6. Matriz regular
7. Matriz singular
8. Matriz idempotente
9. Matriz involutiva
10. Matriz simétrica
11. Matriz antisimetrica o hemisimetrica

Ecuaciones con Radicales

Ecuaciones con Radicales

Las ecuaciones con radicales son aquellas que tienen la incógnita bajo el signo radical.
Se aísla un radical en uno de los dos miembros, pasando al otro miembro el resto de los términos, aunque tengan también radicales.
Se elevan al cuadrado los dos miembros.
Se resuelve la ecuación obtenida.
Se comprueba si las soluciones obtenidas verifican la ecuación inicial. Hay que tener en cuenta que al elevar al cuadrado una ecuación se obtiene otra que tiene las mismas soluciones que la dada y, además las de la ecuación que se obtiene cambiando el signo de uno de los miembros de la ecuación.
Si la ecuación tiene varios radicales, se repiten las dos primeras fases del proceso hasta eliminarlos todos.
ecuación
 Aislamos el radical:
ecuación
 Elevamos al cuadrado los dos miembros:
ecuación
ecuación
3º Resolvemos la ecuación:
ecuación
solución
4º Comprobamos:
comprobación
La ecuación tiene por solución x = 2.
ecuación
ecuación
ecuación
ecuación
ecuación
ecuación
comprobación
La ecuación tiene por solución x = 4.

Función Cuadrática

 

Función Cuadrática

metodo de sistitucion

MÉTODO DE SUSTITUCIÓN PARA UN SISTEMA DE ECUACIÓN 

Es el método para resolver ecuaciones algebraicas sustituyendo una variable on una cantidad equivalente de términos de otras variables de manera que el numero total de incógnitas se reduzca.  

PASOS PARA RESOLVER ESTE MÉTODO 

1.Se despeja la misma incógnita en ambas ecuaciones.
2.Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita.
3.Se resuelve la ecuación.
4.El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita.
5Los dos valores obtenidos constituyen la solución del sistema.

EJEMPLO:

1.En este primer paso procedemos a intercambiar términos.
2.En este paso despejamos x.

3.En este ultimo paso despejamos y obteniendo la respuesta de las incógnitas.

ecuacines de igualdad

MÉTODO DE IGUALDAD

Este método consiste en una pequeña variante del antes visto de sustitución.
Para resolver este método de ecuación hay que despejar una incógnita, la misma en las dos ecuaciones e igualar el resultado de ambos despejos con lo que se obtiene una ecuación de primer grado.

FASES DEL PROCESO

1.Se despeja la misma incógnita en ambas ecuaciones.
2.Se igualan las expresiones obtenidas y se resuelve la ecuación lineal de una incógnita que resulta.
 3.Se calcula el valor de la otra incógnita sustituyendo la ya hallada en una de las ecuaciones despejadas de primer grado.     

EJEMPLO:

1.Ejercicio planteado

2.Procedemos a despejar las incógnitas que son (x y)
            
3.Procedemos a multiplicar los términos.
4.En este paso despejamos (y)


5.Luego en este paso procedemos a despejar la incógnita que es (x)

6. Procedemos a resolver las incógnitas que son (x)(y) y nos da como resultado 24